Patentability and PHOSITA in the AI Era (with a focus on inventive step)

July 30, 2021

Ichiro Nakayama

Graduate School of Law, Hokkaido University (Japan)
Chapter 5,
Patentability and PHOSITA in the AI Era
- A Japanese Perspective

Types of AI-related inventions

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Example</th>
<th>Current Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Type 1)</td>
<td>Inventions of AI technologies</td>
<td>Created by humans to improve AI technologies</td>
<td>Not a few today</td>
</tr>
<tr>
<td>(Type 2)</td>
<td>AI-assisted inventions</td>
<td>Created by humans with the use of AI AI as a tool</td>
<td>Not a few today</td>
</tr>
<tr>
<td>(Type 3)</td>
<td>AI-generated inventions</td>
<td>Autonomously generated by AI Instruction may be necessary e.g. “Generate something like …”)</td>
<td>Few today? May increase in future?</td>
</tr>
</tbody>
</table>
Applications of AI-related inventions in Japan

Categories of AI-related inventions in Japan

“Artificial Inventor Project”

- AI called “DABUS” allegedly invented autonomously
 - A food or beverage container
 - Devices and methods for attracting enhanced attention

- Applicants assert
 - AI = inventor
 - AI’s owner = owner of the right to obtain the patent
“Food Container”

Fig. 6

Fig. 7

EP 18275163
“Devices and methods for attracting enhanced attention”

EP 18275174

Figure 1

Figure 3
“Artificial Inventor Project”

- 2 patent applications which claimed DABUS (AI) as inventors

- UKIPO, EPO and USTPTO rejected the applications
 - Inventor = natural person
 - AI has no legal rights and thus cannot assign any rights to AI owners

Issues of AI-assisted inventions or inventions on AI technologies

✓ Patent eligibilities

✓ Description requirements

✓ Inventive Step (Non-obviousness)

Japanese Patent Office (JPO)’s Examination Guidelines & Handbook addressed some of them (not all of them)
Patent Eligibility

- Not a few AI-related inventions are software-related inventions
- If computer software is eligible for patent, so are AI-related inventions

Whether may software fall within the definition of “invention” or not?

Japanese Patent Act, Article 2 (1)

“Invention” in this act means the highly advanced creation of technical ideas utilizing the laws of nature.

Does software utilize the laws of nature?
Does computer software utilize the laws of nature?

- Examination Handbook, Annex B Chapter1, 2.1.1.2(1)

(i) When … "information processing by the software is concretely realized by using hardware resources," said software is a "creation of a technical idea utilizing the laws of nature.

"a specific information processor or an operation method … is constructed through cooperation of the software and the hardware resources"

Software-related inventions could be patentable (by careful claim drafting)
So could AI-related inventions (type 1 and type 2)
Claim

A trained model for causing a computer to function to output quantified values of reputations of accommodations based on text data on reputations of accommodations, wherein;

the model is comprised of a first neural network and a second neural network connected in a way that the said second neural network receives output from the said first neural network;

…
Description Requirements

- No patent without disclosure
 - A patent is granted in exchange for disclosing an invention
 - AI as a black box give no idea why AI produced the estimated results

Person having ordinary skills in the arts (PHOSITA) may or may not understand

- How to work the invention
- How to solve a technical problem
Description Requirements

- Enablement

 The statement of the **detailed explanation of the invention** … shall be **clear and sufficient** as to enable any person ordinarily skilled in the art to which the invention pertains to work the invention; …

- Support requirement

 The statement of the scope of **claims** … shall comply with each of the following items:
 (i) the invention for which a patent is sought **is stated in the detailed explanation of the invention**; …
Claim 1: Violation of the enablement requirement

A certain correlation among each data in a training data is not supported by the description and is not a common general technical knowledge at the time of filing. Therefore, the description requirement is not satisfied.

[Claim 1]
A sugar content estimation system comprising:
- a storage means for storing face images of people and sugar contents of vegetables produced by the people;
- a model generation means for generating a determination model through machine learning, to which a face image of a person is input and from which a sugar content of a vegetable produced by the person is output, using training data containing the face images of the people stored in the storage means and the sugar contents of the vegetables;
- a reception means for receiving an input of an face image; and
- a processing means for outputting, using the generated determination model that has been generated by the model generation means, a sugar content of a vegetable produced by a person that is estimated based on the face image of the person inputted to the reception means.
Description Requirement: Case Example 46

SUGAR CONTENT ESTIMATION SYSTEM

[Overview of the Description]

It is an object of the present invention to provide a system that estimates a sugar content of a vegetable produced by a person based on his/her face image, taking advantage of the existence of a certain correlation between a face feature of a person and a sugar content of a vegetable produced by the person. For example, a face figure is characterized by a head length, face width, nose width, and lip width as shown in the figure. Here, a “sugar content” of a vegetable means a sugar content at the time when a certain period predetermined for each type of vegetables has passed after seeding. With this system, it is possible to estimate which person can produce a vegetable with a highest sugar content in a community.

A sugar content estimation system of the present invention firstly receives an input of a face image of a person by a user. A sugar content of a vegetable produced by a person is obtained using a determination model, to which a face image of the person is input and from which a sugar content of the vegetable produced by the person is output. The determination model is generated through a supervised machine learning using a known machine learning algorithm such as a convolutional neural network (CNN) by learning correlation between a face image of a person and a sugar content of a vegetable produced by the person.

[Overview of Reason for Refusal]

Article 36(4)(i) (Enablement Requirement)

According to the description, a human face image is used for an input to a determination model that estimates a sugar content of a vegetable produced by the person. The description says that a face feature is characterized by a head length, face width, nose width, and lip width, for example.

However, the description only discloses that there is a certain correlation between a face image of a person and a sugar content of a vegetable produced by the person and does not disclose any correlation or the like between them, though disclosing that a face feature is characterized by a head length, face width, nose width, and lip width, for example. It cannot be presumed that there is a correlation or the like between them, even if a common general technical knowledge at the time of filing is taken into consideration. Further, there is no performance evaluation result of an actually generated determination model shown in the description.

Accordingly, it is not possible for a person skilled in the art to derive a sugar content estimation system that outputs an estimation of a sugar content of a vegetable produced by a person based on an input of a face image of the person, even if the disclosure in the description and a common general technical knowledge at the time of filing are taken into consideration.
Description Requirement: Case Example 51

Claim 1: violation of the support/enablement requirements

An invention of product is claimed. However, the invention is not evaluated using an actually-produced product and an estimation accuracy of a trained model is not verified. Further, it is not assumed that it is a common general technical knowledge at the time of filing that an estimation result by a trained model can be a substitution for an actual experimental result. Therefore, the description requirement is not satisfied.

[Claim 1]

An anaerobic adhesive composition comprising: a 0.08 - 3.2 mass % compound A, a 0.001 – 1 mass % compound B, and a residue containing an anaerobically curable (meth)acrylate monomer, wherein the anaerobic adhesive composition shows the curing strength equal to or exceeding 30 % of the curing strength after 24 hours have passed, within 5 minutes from the start of curing.

Q: What is a composition of an anaerobic adhesive with a curing strength equal to or exceeding 30 %?

A: an anaerobic adhesive composition having a desired curing strength includes:

- compound A
- compound B

There is no disclosure provided as to an actual production or measurement of a curing strength.
Description Requirement: Case Example 51

ANAEROBIC ADHESIVE COMPOSITION

[Overview of the Description]
In an embodiment, in order to derive an anaerobic adhesive composition attaining such an object, a conventionally known component data of an anaerobic adhesive composition, a curing strength data within 5 minutes from the start of curing, and a curing strength data after 24 hours have passed were input to a neural network; and then a trained model was prepared in a manner that a component of the anaerobic adhesive composition and a ratio between the curing strength within 5 minutes from the start of curing and the curing strength after 24 hours have passed were associated with each other. Further, an estimation result is disclosed showing the possibility where an anaerobic adhesive composition containing an anaerobically curable (meth)acrylate monomer can be obtained using the trained model, which realizes the curing strength equal to or exceeding 30% of the curing strength after 24 hours have passed within 5 minutes from the start of curing, by adding a 0.08 - 3.2 mass % compound A and a 0.001 - 1 mass % compound B in combination.

(Notes) The description does not disclose any embodiment in which an anaerobic adhesive composition is actually produced within the above combination ratio and then the curing strength is measured. Further, there is no verification shown on the estimation accuracy of the trained model. Furthermore, it is not known that the curing strength is enhanced within 5 minutes after the start of curing, by adding any one of a compound A, a compound B, and the combination thereof. Meanwhile, a measurement method and condition are specifically disclosed to measure the curing strength within 5 minutes after the start of curing and the curing strength after 24 hours have passed.

[Overview of Reason for Refusal]

Article 36(4)(i) (enablement requirement) / Article 36(6)(i) (support requirement)
It is the common technical knowledge at the time of filing that it is difficult to control an anaerobic adhesive composition so as to rapidly raise the curing temperature within 5 minutes or so after the start of curing, and that various conditions for production such as a type, combination, or combination ratio of polymer material, free radical initiator, or free radical reducing agent closely interact with each other.

The description only discloses that a trained model predicted that, as long as a composition meets the combination ratio prescribed in Claim 1, the composition has the curing strength equal to or exceeding 30% of the curing strength after 24 hours have passed, within 5 minutes from the start of curing. Further, the accuracy of an estimation value by the trained model is not verified, and there was no such a common technical knowledge at the time of filing that an estimation result by a trained model can be a substitution for an actual experimental result.

Any embodiment is not disclosed supporting the fact that the claimed composition shows the curing strength equal to or exceeding 30% of the curing strength after 24 hours have passed within 5 minutes from the start of curing, by actually producing a composition including a 0.08 - 3.2 mass % compound A, a 0.001 - 1 mass % compound B, and a residue containing an anaerobically curable (meth)acrylate monomer, and then measuring the curing strength.

Thus, it does not seem that the description provide a sufficient disclosure of the invention in a manner that a person skilled in the art can produce the anaerobic adhesive composition as in Claim 1 that shows the curing strength equal to or exceeding 30% of the curing strength after 24 hours have passed, within 5 minutes from the start of curing.

Claim 1 discloses an invention of an anaerobic adhesive composition comprising a 0.08 - 3.2 mass % compound A, a 0.001 - 1 mass % compound B, and a residue containing an anaerobically curable (meth)acrylate monomer, in which the curing strength of the composition is equal to or exceeds 30% of the curing strength after 24 hours have passed, within 5 minutes from the start of curing. Meanwhile, in view of the disclosure in the description and the common general technical knowledge at the time of filing, the description does not provide a sufficient disclosure so as to enable a person skilled in the art to recognize that an object of the present invention to provide an anaerobic adhesive composition showing the curing strength equal to or exceeding 30% of the curing strength after 24 hours have passed within 5 minutes from the start of curing can be attained.

Description Requirements in Summary

• **Correlation** among various training data

 • Needs to be verified in the description either by
 - ✓ Actual experimentation or
 - ✓ A common general technical knowledge

 AI’s estimation alone may **not be sufficient**
 (Low credibility)
Inventive Step (Non-obviousness)

Japanese Patent Act, Article 29 (2)

Where, prior to the filing of the patent application, a person ordinarily skilled in the art of the invention would have been able to easily make the invention based on an invention prescribed in any of the items of the preceding paragraph, a patent shall not be granted for such an invention notwithstanding the preceding paragraph.

→ Protect inventions which would not be disclosed but for the inducement of a patent (inducement theory).
Inventive Step: Case Example 33

CANCER LEVEL CALCULATION APPARATUS

Claim 1: Mere a systemization of manually-operated tasks using AI and considered to be lack of inventive step.

[Cited Invention 1]
A cancer level calculation method of calculating a possibility that a subject person has cancer is carried out by a doctor, using a blood sample of the subject person comprising a step of cancer level calculation, wherein a possibility that a subject person has cancer is calculated, using measured values of A marker and B marker that have been obtained through blood analysis of the subject person.

Mere application of AI lacks inventive step

Inventive Step: Case Example 33

CANCER LEVEL CALCULATION APPARATUS

[Well-known Art]
It is well-known, in the field of machine learning, to calculate an output data representing a possibility that a subject person has a certain disease based on a prescribed set of input data on the subject person, using a trained neural network, which has been trained through machine learning with training data. The training data contains an input data that has been collected from multiple people, each of which consists of a prescribed set of input data (biological data etc.) on each person, and an output data representing a possibility that the person has the disease.

Claim 1 lacks inventive step.

[Overview of Reason for Refusal]
The invention of Claim 1 and Cited Invention 1 are different from each other at the point below.

(Difference)
The invention of Claim 1 is a cancer level calculation apparatus that calculates a possibility that a subject person has cancer in response to an input of measured values of A marker and B marker, using a trained neural network through machine learning with training data. Meanwhile, Cited Invention 1 discloses a cancer level calculation method through which a doctor calculates a possibility that a subject person has cancer based on measured values of A marker and B marker.

The difference is assessed as follows.

.......

Both Cited Invention 1 and the well-known art relate to estimation of the possibility of illness, and they share a common problem to be solved. It is mere the exercise of the ordinary creativity of a person skilled in the art to systemize an estimation method carried out by a doctor in the medical field using a computer or the like.

In view of the factors above, a person skilled in the art can easily conceive of systemizing a calculation method of a possibility that a subject person has cancer, which has been carried out by a doctor, by applying the well-known art to Cited Invention 1, and calculating a possibility that a subject person has cancer in response to an input of measured values of A marker and B marker using a trained neural network through machine learning with training data.

Further, a person skilled in the art can readily anticipate the effects of the invention of Claim 1. Also, there are no obstructive factors found to apply the well-known art to Cited Invention 1.
Inventive Step: Case Example 34

ESTIMATION SYSTEM OF HYDROELECTRIC GENERATING CAPACITY

Claim 1: mere a modification of estimation method to estimate output data based on input data, and considered to be lack of inventive step

Claim 2: a significant effect is found because of addition of training data for machine learning, and considered to have inventive step

[Claim 1] An estimation system of a hydroelectric power generating capacity of a dam comprising:

- a neural network that is built by means of an information processor, the neural network having an input layer and an output layer, in which an input data to the input layer containing a precipitation amount of the upper stream of a river, a water flow rate of the upper stream of the river, and a water inflow rate into a dam during a predetermined period between a reference time and a predetermined time before the reference time, and an output data from the output layer containing a hydroelectric power generating capacity in the future after the reference time;

- a machine learning unit that trains the neural network using a training data corresponding to actual values of the input data and the output data;

and

- an estimation unit that inputs the input data to the neural network that has been trained by the machine learning unit with setting a current time as the reference time, and then calculates an estimated value of a future hydroelectric power generating capacity based on the output data of which reference time is the current time.

[Claim 2] The estimation system of a hydroelectric power generating capacity as in Claim 1, wherein the input data to the input layer further contains a temperature of the upper stream of the river during the predetermined period between the reference time and the predetermined time before the reference time.

Inventive Step: Case Example 34

ESTIMATION SYSTEM OF HYDROELECTRIC GENERATING CAPACITY

[Well-known Art] In the technical field of machine learning, it is well-known that an estimation process of an output in the future is carried out based on an input of time series data in the past, by using a trained neural network which has been trained with a training data containing an input of time series data in the past and a certain output in the future.

X The invention of Claim 1 lacks an inventive step.
O The invention of Claim 2 has an inventive step.

[Overview of Reason for Refusal]
The invention of Claim 1 and Cited Invention 1 are different from each other at the point below.

(Difference)
The invention of Claim 1 realizes an estimation of a hydroelectric power generating capacity by means of a neural network having an input layer and output layer. Meanwhile, Cited Invention 1 realizes an estimation of a hydroelectric power generating capacity by means of a regression equation model.

The difference is assessed as follows. Cited Invention 1 and the well-known art are common with each other in estimating a certain output in the future based on an input of time series data in the past, with reference to a correlation among data. Therefore, a person skilled in the art could easily derive a configuration that enables estimation of a hydroelectric power generating capacity, by applying the well-known art to Cited Invention 1 and adopting a trained neural network in substitution of a regression equation model.

(Basis for Determination that there is No Reason for Refusal found)
The invention of Claim 2 and Cited Invention 1 are different from each other at the point below.

(Difference)
The invention of Claim 2 contains, in an input data into an input layer, a temperature of the upstream of the river during a predetermined period between a reference time and a predetermined time before the reference time. Meanwhile, Cited Invention 1 does not have such a configuration.

The difference is assessed as follows.
The invention of Claim 2 uses a temperature of the upstream of the river for estimation of a hydroelectric power generating capacity.
There is no prior art found disclosing such use of a temperature of the upstream of the river. Accordingly, it is not a common general technical knowledge that there is a correlation between a temperature and a hydroelectric power generating capacity.

Generally, an input of data of which correlation is unknown may cause a noise in machine learning. However, the invention of Claim 2 uses an input data containing a temperature of the upstream of the river during a predetermined period between a reference time and a predetermined time before the reference time. This enables a highly accurate estimation of a hydroelectric power generating capacity, taking an increase of inflow rate due to meltwater in the spring into consideration. It is a significant effect that a person skilled in the art cannot expect.

Accordingly, it does not considered to be a mere workshop modification that can be carried out in application of the well-known art to Cited Invention 1 by a person skilled in the art to contain, in an input data in an estimation of a hydroelectric power generating capacity, a temperature of the upstream of the river during a predetermined period between a reference time and a predetermined time before the reference time.
Correlation not presumed by a common general technical knowledge

- May satisfy inventive step
- May deny description requirements, unless actual experimentation verifies AI’s estimation

Correlation among training data may work in the opposite directions
Inventive Step in Summary

- **Mere application** of AI = exercise of the **ordinary creativity** by PHOSITA

 ✓ May **deny** inventive step

 ✓ **Same** practice as in **computer-implemented inventions**

 Mere systemization of manually-operated tasks by computers may lack incentive step

 PHOSITA is expected to use AI to the same extent as general purpose computers.
Broader Implications?

- 2 kinds of AI-related inventions in JPO’s Handbook

 a. Inventions applying AI technologies in various fields

 b. Inventions of products whose functions is presumed by AI
 e.g. Case example 51 anaerobic adhesive composition

- In both types, applicants *admit* the use of AI in either claims or description
- Applicants may *not disclose* the use of AI for the second type inventions

 ✓ AI is *not* an element of the claims
Broader Implications?

✅ No incentives to disclose AI’s estimation

They have to disclose either actual experimentation or a common general technical knowledge in order to satisfy disclosure requirements

✅ Hardly know the use of AI by applicants in their R&D process

- Many AI-related inventions created with the use of AI without disclosing it?
- Should all applications, whether or not they disclose the use of AI, be examined on the assumption that PHOSITA would use AI?
Justifying PHOSITA with AI?

- Justifiable under inducement theory

 No patent incentives are necessary for an invention that PHOSITA would easily create by using AI

- Consistent with the notion of PHOSITA in practice

 Examination Guidelines, Part III Chapter 2 Section 2 2.

 One of the conditions of PHOSITA is “A person who is able to use ordinary technical means for research and development (including document analysis, experiment, technical analysis, manufacture, etc)
Pyrimididine Derivative Case

- IP High Court, April 13, 2018, 2016 (Gyo-Ke) 10182, 10184
 - The Invention: a compound in pharmaceuticals

- Difference between the Invention and the main cited invention
- Described as one of more than 20 million alternatives of the general formula in the sub-cited invention (Markush claims)

Does the combination of these inventions deny the inventive step?
IP High Court held

- If a compound was described in the form of general formula in the prior art and the general formula had an enormous number of alternatives, it was impossible to extract a specific technical idea embodied in a specific alternative and find it as a cited invention, unless there was a circumstance where the specific alternative should be positively or preferentially selected.

- In this case, since no circumstances could be found where the specific alternative out of more than 20 million alternatives should be selected, inventive step may not be denied
AI’s impacts on the holdings

- The development and diffusion of AI may affect the court’s holding in future
 - More than 20 million alternatives may be enormous for humans today but may not be so for AI in future
 e.g. Materials informatics

✅ AI may make it easier for PHOSITA to find a solution that they would hardly do by conventional technologies, which may raise the threshold of inventive step

✅ However, is it fair to say that AI may be “ordinary technical means” that PHOSITA would use?
Is the use of AI widespread?

Introduction of AI in Process

Is the use of AI widespread?

Introduction of AI in Product

<table>
<thead>
<tr>
<th></th>
<th>2018</th>
<th>2020</th>
<th>2025~/undecided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan (n=188)</td>
<td>19.7</td>
<td>38.3</td>
<td>59.6</td>
</tr>
<tr>
<td>US (n=312)</td>
<td>28.8</td>
<td>48.4</td>
<td>70.2</td>
</tr>
<tr>
<td>UK (n=413)</td>
<td>27.4</td>
<td>49.6</td>
<td>79.4</td>
</tr>
<tr>
<td>Germany (n=411)</td>
<td>24.3</td>
<td>56.4</td>
<td>79.8</td>
</tr>
</tbody>
</table>

PHOSITA with AI

- Although AI has not been widely used at this moment of time, it is forecasted to be widespread rapidly
 - Incentives in the market for introducing AI (outside the patent law)
 - To supplement the shortage of labor force
 - To make the business more efficient

It may be reasonable to expect PHOSITA to use AI, regardless of whether applicants used it or not

Not applicants but PHOSITA determines the level of inventive step
JPO’s unconscious support

• JPO’s Handbook

 • Mere application of AI = exercise of the ordinary creativity by PHOSITA

 PHOSITA is presumed to use AI to the same extent as general purpose computers.

If PHOSITA could use general purpose computers as ordinary technical means, they could also use AI as ordinary technical means.
How is PHOSITA with AI taken into account in practice?

- Proposals to test \textit{reproducibility} by AI

1st step

Determine the extent to which AI is used in the field

2nd step

Identify specific AIs

\textit{e.g.} Deep Mind (Google) and Watson (IBM)

3rd step

Test reproducibility

by investigating \textit{whether specified AI would reproduce the invention within reasonable time}
How is PHOSHITA with AI taken into account in practice?

- The 1st step is unnecessary due to the above-mentioned reason

- Practical difficulties
 - Inventive steps should be examined at the filing (priority) date
 - Need to **downgrade** AI’s capabilities improved after the filing date
 - Training **data** should be **restricted** to date existed at the filing date

*It may **not** be **feasible** to reproduce such an AI.*

*In other fields of technologies, patent examiners are **not** expected to conduct an experimentation in determining the inventive step.*

Why do they have to verify reproducibility of AI-related inventions?
How is PHOSITA with AI taken into account in practice?

- PHOSITA = legal fiction ≠ real person

- Inquiry in inventive step
 - does not aim at scientific verification
 - normative, legal question in light of purposes of patent law

Testing reproducibility by AI may not be necessary

Then, what alternatives?

Experts’ opinion (likely to be submitted at later stages such as the lawsuits, invalidation trials, post-grant oppositions, etc.)?
Conclusion

- JPO’s updated Handbook
 - Took one step forward in the right direction
 - **Not enough**, in particular, for **inventive step**

- The notion of **PHOSITA with AI** may have **broader** impacts such as **raising the threshold of inventive step**

- There remain many questions…
If the development of AI continues to raise the threshold of inventive step as Prof. Abbott said “everything is obvious,” do we have to worry that no human inventors could obtain patents, thereby discouraging them?

NO.

• Endless generation of AI output → No market failure (underproduction)

• Investments are still necessary, but

 ✓ Inventions of AI technologies could be patentable

 ✓ Other appropriation mechanism to recoup investment
 e.g. leadtime, secrecy, complementary assets (sales network, factories)
Other Patent Offices’ reports

- USPTO “Public Views on Artificial Intelligence and Intellectual Property” (October 2020)
 “Many commenters asserted that AI has the potential to affect the level of ordinary skill in an art.”

- UKIPO “Government response to call for views on artificial intelligence and intellectual property” (23 March 2021)
 A large majority of responses’ “view was that “the person skilled in the art” has a range of tools available to them and AI technologies will be one of those tools.”